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ABSTRACT 

 
Airborne lidar provides timely updated maps for monitoring 
forest change at high resolution but it has been little used for 
that purpose due to the scarcity of long-term time-series 
over a common area. The NASA Jet Propulsion Laboratory 
Airborne Snow Observatory (ASO) is a landscape-level 
monitoring system that provides ongoing multi-year remote 
sensing measurements over mountainous ecosystems to 
primary quantify snow volume and dynamics. It collects 
low-resolution lidar data (~1.5 pt/m2) with a nominal weekly 
frequency up to 12 times a year with measurements that 
span 2013-2017 over 12 mountain watersheds across the 
western US that currently face ecological threads.  
In this work, we present a method to automatically register 
ASO weekly low-resolution lidar point clouds in order to 
calculate spatially consistent datasets (~12 pt/m2) adapted to 
fine scale forestry studies. We test the method using 12 lidar 
datasets acquired over the Tuolumne River Basin (Sierra 
Nevada, California) in the spring and summer of 2014. On 
average, the ASO lidar system provides accurate 
measurements in terms of geolocation (0.38m and 0.12m for 
the horizontal and vertical dimension, respectively) but 
some datasets are biased up to 1.38m and 0.53m, 
respectively. Our registration method successfully corrected 
for systematic bias improving the 3D geometry of forest 
point clouds. 
 

Index Terms— lidar, time series, point cloud 
registration, forest structures analysis 
 

1. INTRODUCTION 
 
There is a lack of time series maps to understand forest 
disturbance and regeneration processes over the forests in 
the Sierra Nevada (California) forests that are currently 
experiencing dramatic tree mortality rates due to severe 
insect and drought damage [1], [2]. More than 102 million 
trees died in California forests and the state government as 
being in greatest need of tree removal because they 
represent potential direct threat to people and infrastructures 
from falling trees as well as boarder fire risk and forest 
health. Timely updated maps of dead tree and corresponding 
volume would help forest managers in optimizing resources 
and reduce costs. Field inventory approaches are constrained 

by the spatial and temporal frequency of sampling and 
hence might not adequately capture disturbance and 
regeneration processes. The current time-series of maps to 
characterize forest dynamics have been computed using 
multispectral and radar imagery that are not suited to study 
many ecological processes in detail (e.g. fuel bed loads 
accumulation, tree recruitment) because they are not able to 
characterize 3D forest structure.  
Airborne lidar provides spatially explicit maps of forest 3D 
structure at the landscape level that are increasingly needed 
by the scientific community to support a wide range of 
activities [3], [4]. However, the availability of forest 3D 
maps has been limited by the high cost associated with 
acquiring lidar data with the resolution required to properly 
characterize forest horizontal and vertical structure (>8 
pts/m2). Most forestry studies have been based on a snapshot 
and there is no long-term time-series of data to investigate 
forest dynamics.  
The NASA-JPL Airborne Snow Observatory (ASO) offers a 
unique opportunity to study Californian forests dynamics at 
the landscape level. It offers multiple acquisitions over 
mountain systems each winter and spring in, at present, 12 
mountain watersheds (Figure 1a) that are populated by 
vegetated areas of ecological interest over the Sierra Nevada 
(California, since 2013), The Rocky Mountains (Colorado, 
since 2013), Mount Jefferson (Oregon, since 2016), and 
Mount Olympus (Washington, since 2014). The ASO is a 
scanning lidar system coupled to an imaging spectrometer 
which main purpose is to monitor spatial distribution of 
snow volume and dynamics over mountains watersheds 
([5]). To do this, ASO weekly over-flights mountainous 
areas several times a year during snowfall and snowmelt 
seasons. In addition, there is an additional flight in snow-off 
conditions to calculate the corresponding Digital Terrain 
Models (DTM), which is combined with snow-on products 
to estimate the snow depth for a given date. However, the 
point density of the weekly measurements (~1.5 pts/m2) is 
not adapted to analyze forest structure in detail (e.g. forest 
vertical structure, individual tree crowns, fuel bed loads). In 
this work, we coherently fusion the low-density weekly 
ASO measurements to calculate a high-density density point 
cloud to properly characterize vegetation structure in detail.  
We developed a new method to register the ASO low-
resolution time series of lidar data.  Former methods are not 
adapted to the ASO data because they have been developed 



to apply to high-density point clouds mainly over urban 
areas where the identification of corresponding points 
(which are commonly called tie points and are crucial to 
align point clouds) can be achieved thought the extraction of 
easily recognized features (e.g. roads intersections, roofs 
edges). However, the low resolution of our datasets as well 
as the dynamics of our landscape introduced by snow and 
ice events makes the identification of such features difficult.  
 

2. MATERIAL 
 
2.1. Study site 
 
Our study site is located in the Tuolumne River Basin on the 
west side of the Sierra Nevada, California (Figure 1, [6]). 
The Tuolumne Basin above the O’Shaughnessy Dam has 
~1100 km2 area, of which ~40% is covered by forests of 
California red fir, Jeffrey pine and Douglas fir. Elevations 
range from 1190 m at the dam up to 4000 m at the summit 
of Mt Lyell, the highest point in Yosemite National Park at 
the southern end of the basin. We selected a study site with 
significant vegetation cover (7 km x 4 km rectangle in 
Figure 1a)  
 

 
Figure 1. Airborne Snow Observatory (ASO) coverage sites (a, black dots) 
across the US and a b) zoom over the Tuolumne River basin study site (, 
blue rectangle, 7 km x 4 km) in the Sierra Nevada, California Well know 
locations are provided for better location. 

 
2.2. Lidar data 
 
The study site was measured in twelve different dates in 
2014 using the ASO Riegl Q1560 scanning lidar system in 
full-waveform mode. Eleven of twelve datasets were 
acquired in snowon conditions between March 23rd and June 
5th whereas the remaining summer acquisition (August 27th) 
mapped the ground topography. The position and orientation 

of the platform are given by onboard GPS/IMU 
measurements. In addition, the onboard GPS measurements 
are calibrated using differential position correction using 
GPS base stations. The expected final point density for the 
weekly acquisitions is of 1.5 pts/m2. The ground points have 
been classified using the TerraScan software [7]. Note that, 
in snowon conditions the points classified as ground may 
correspond to the snow surface.  

 
3. METHODS 

 
The first step consists in removing the lidar points 

corresponding to the snow surface from the snowon 
acquisitions. Otherwise, they would be confused with low 
vegetation because they show higher altitude regarding the 
bare ground topography. To do this, we simple remove all 
the points lower than 30 cm from a surface computed using 
the points classified as ground. In the second step, we apply 
the new registration method developed to apply for low-
density lidar point clouds over natural landscapes. The latter 
is based in a coordinates transformation model defined by: 
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the coordinates of the original and adjusted lidar point 
clouds, respectively; 𝑖 = 1,… 𝑛 and 𝑗 = 1, … ,𝑚 where 𝑛 is 
the number of points in a given point cloud and 𝑚 the 
number of lidar acquisitions; 𝑉' = (∆𝑥', ∆𝑦', ∆𝑧') is a 
translation vector and 𝑅'(𝛼, 𝛽, 𝛾) a 3D rotation matrix 
defined by the axis angles (𝛼, 𝛽, 𝛾). To solve Eq. 1) in order 
to calculate the corresponding translation vector and rotation 
matrix for each weekly acquisition, we define a datasets of 
tie objects that need to have at least four elements because 
Eq. 1) is defined in three dimensions. To play the role of tie 
objects, we manually select isolated tree apexes because 
they are the landscape feature that changes the less with 
snowfall and ice events. However, the identification of the 
tree apexes on the weekly acquisitions is difficult due to the 
fact that most likely the lidar misses the tree apex because of 
the low spatial resolution of the measurements. We decided 
to select the nearest lidar point from each weekly acquisition 
as the best proxy for the tie object location (called vertices, 
Figure 2a). Then, we adjust the location of each tie objects 
by calculating the barycenter of the multiple vertices (Figure 
2b). Finally, we calculate a transformation model for each 
lidar acquisition. To do this, we set the coordinates of the 
vertices, 𝑋6

%,', for each acquisition in Eq. 1). The 
corresponding translation vector 𝑉'  and transformation 
matrix 𝑅' give us the magnitude and direction of the 
geolocation error for a given acquisition. To visually assess 
such errors, we normalize the coordinates of the vertices 
using the coordinates of the corresponding tie objects. It 



allows computing a scatterplot where the coordinates of the 
vertices correspond to the distance and direction to the 
corresponding tie object (Figure 2c). The spatial distribution 
of the vertices with respect to the origin of the scatter plot is 
a good indicator of the nature and magnitude of the 
geolocation errors.  For instance, if their majority is located 
towards a given direction, it means that there is a systematic 
location error. The modes of the vertices locations allow to 
visually identify systematic bias (larger dots in Figure 2c).   
 

 
Figure 2. Registration method scheme with a) two isolated trees selected as 
tie objects (green trees T1 and T2) and the highest neighbor lidar points 
from the weekly acquisitions (called vertices). b) The location of the tie 
objects is adjusted to the vertices barycenter (red asterisk). In c), the 
coordinates of the vertices have been normalized using the corresponding 
tie object location for visualization purposes. The larger dots correspond to 
the mode of the vertices and are a good estimator for the magnitude and 
direction of the geolocation errors for each weekly acquisition.  

 
4. RESULTS AND DISCUSSION 

 
Results are assessed over the study site shown in 

Figure 1. For this study, we defined twenty tie objects 
distributed over the area of interest by identifying isolated 
trees (green dots in Figure 1). Figure 3a shows the weekly 
acquisitions merged before our registration method is 
applied. In general, the point clouds are spatially consistent 
but some acquisitions (e.g. March 2014) show a large 
location bias regarding the remaining ones that jeopardizes 
the forest features outlines (e.g. tree apexes).  
 

  
Figure 3. Point cloud merged a) before and b) after registration. 

 
Figure 4a shows the coordinates of the vertices 

normalized by the coordinates of the corresponding tie 
objects as explained in Figure 2c. A similar analysis is made 
for the altitude of the points (Figure 4b). Therefore, the 
locations of the modes of the vertices (represented by the 
larger dots) are a good indicator for the magnitude and 
direction of the misalignment between acquisitions. The 
acquisitions of March the 23rd, and May the 11th, they both 
show a significant systematic geolocation error in 
planimetric dimension, whereas only the former acquisition 
has important issues in altimetry. Figure 4c and d show the 
scatter plots after applying our method. As expected, the 
modes of the individual acquisitions overlap in the origin of 
the graphs, whereas the spread of the vertices changed little 
with respect to the original data. Indeed, the purpose of our 
method was not to adjust individually the vertices because 
they might not correspond exactly to the location of the tie 
objects due to the low resolution of the data. The goal was 
to find a global solution able to remove systematic 
geolocation errors. The goal was achieved because the 
modes they all overlap to the origin (Figure 4c and d).  
 

  

  
Figure 4. Vertices grouped by acquisition date (small dots) and 
corresponding modes (large dots) in the horizontal (figures in the left) and 
vertical (figures in the right) dimensions. Top and bottom images 
correspond to the analysis before and after registration, respectively.  

 
Figure 5 shows the magnitude of the registration vector 

for each weekly acquisition calculated using the translation 
vector 𝑉'  and transformation matrix 𝑅' (Eq. 1). At some 
extent, Figure 5 quantifies the errors show by the larger dots 
in Figure 4a and b. With respect to the horizontal dimension, 
most of the datasets show very low bias. The only two 
exceptions have a moderate strong and a moderate bias 
slightly higher than 1.3m and 0.8m, respectively. As far as 
the vertical domain is concerned, most of the measurements 
are quite accurate (~0.2m) with a single exception (~ 
0.52𝑚). Results show that the geolocation error of the ASO 
system is larger in the horizontal dimension than in the 



vertical one. The results of the point cloud adjustments are 
show in Figure 3b, which compares to Figure 3a after applying 
our registration method.  It means that our method 
succeeded in removing the bias visible in the original 
measurements. For instance, the comparison between the 
figures shows that the bias of the point cloud acquired in 
March the 23rd of 2014 has been corrected and now better 
matches the remaining datasets. 

 

 
Figure 5. Size of the registration vector for the weekly acquisitions 
calculated from the coordinates transformation models (Eq. 1). 

 
Finally, Figure 6 shows a single acquisition dataset and 

the high-density point cloud calculated by merging the co-
registered individual acquisitions. The latter represents the 
forest structure at a finer resolution in both horizontal and 
vertical dimensions and enables the lidar forest inventory at 
the individual tree level, which is crucial for the monitoring 
of tree mortality as well as for tree biomass estimates over 
areas with inexistent field sampling [8], [9]. 

 

 
Figure 6. Point cloud (100m x 100m) calculated using a) a low-density 
single acquisition and b) a high-resolution multi-temporal point cloud after 
co-registration. The canopy height models (1m resolution, 350m x 250 m) 
have been calculated using a single (c) and twelve (d) lidar acquisitions. 

 
5. CONCLUSION 

 
We concluded that ASO lidar time-series have the potential 
to characterize forest structure at a fine scale. Although the 
nominal flights of the ASO for snowpack monitoring 
provide lower resolution datasets with limited capabilities 
for vegetation sampling, its high temporal resolution enables 
the calculation of high-resolution point clouds by merging 

individual acquisitions. First, we examined the ASO lidar 
system reliability in terms of geolocation because it directly 
impacts the consistency of the high-density product. The 
tests were carried out using 12 lidar acquisitions over the 
Tuolumne River basin. Our point cloud registration method 
shows very satisfactory results in compensating for 
erroneous GPS/IMU measurements. Important 
improvements have been done regarding the main features 
of the forest (e.g. tree apexes) indicating that our method 
improves the spatial consistency of the high-density point 
cloud by correcting for both large and small systematic bias.  
 The ASO offers a unique high-resolution lidar 
dataset to monitor forest change over ecosystems with high 
impact on many ecological and hydrological processes.  It is 
a unique opportunity to study the impact of intense drought 
and warming climate change on forest disturbance and 
regrowth, tree recruitment and mortality, and fuel load 
accumulation. 
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